Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(14): 8072-8080, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547359

RESUMO

To increase the structural diversity of insecticides and meet the needs of effective integrated insect management, the structure of chlorantraniliprole was modified based on a previously established three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The pyridinyl moiety in the structure of chlorantraniliprole was replaced with a 4-fluorophenyl group. Further modifications of this 4-fluorophenyl group by introducing a halogen atom at position 2 and an electron-withdrawing group (e.g., iodine, cyano, and trifluoromethyl) at position 5 led to 34 compounds with good insecticidal efficacy against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compound IV f against M. separata showed potency comparable to that of chlorantraniliprole. IV p against P. xylostella displayed a 4.5 times higher potency than chlorantraniliprole. In addition, IV d and chlorantraniliprole exhibited comparable potencies against S. frugiperda. Transcriptome analysis showed that the molecular target of compound IV f is the ryanodine receptor. Molecular docking was further performed to verify the mode of action and insecticidal activity against resistant P. xylostella.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Diamida/farmacologia , Diamida/química , Simulação de Acoplamento Molecular , Mariposas/metabolismo , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/química , Relação Quantitativa Estrutura-Atividade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Larva/metabolismo
2.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542973

RESUMO

The meta-diamide (m-diamide) insecticide, Broflanilide, was characterized by its high efficiency, low toxicity and lack of cross-resistance with traditional GABA receptors. In accordance with the principles of drug molecular design, easily derivable sulfur with diverse bioactivities was introduced while leading with the parent Broflanilide. Twelve novel m-diamide target compounds containing sulfide derivatives were synthesized through exploration guided by the literature. Their structures were confirmed by melting points, 1H NMR, 13C NMR and HRMS. Insecticidal activity assessments revealed that most target compounds A-D exhibited 100% lethality against Plutella xylostella (P. xylostella) and Aphis craccivora Koch (A. craccivora) at 500 mg·L-1. Notably, for P. xylostella, compounds C-2, C-3, C-4 and D-2 demonstrated 60.00-100.00% insecticidal activity even at a concentration as low as 0.625 mg·L-1. As determined by structure-activity relationship (SAR) analysis, compounds with R1 = CH3 and R2 = Br (B-1, C-2 and D-2) and sulfoxide compound C-3 contained 100.00% lethality against A. craccivora at 500 mg·L-1, surpassing the lethality when leading with the parent Broflanilide in terms of efficacy. Consequently, it can be inferred that the sulfoxide compound (C-3) requires further investigation as a potential active molecule for new insecticides. These explorations provide valuable references for future research on the synthesis and insecticidal activities of sulfide-containing m-diamide compounds.


Assuntos
Benzamidas , Fluorocarbonos , Inseticidas , Mariposas , Praguicidas , Animais , Estrutura Molecular , Diamida/química , Relação Estrutura-Atividade , Inseticidas/farmacologia , Inseticidas/química , Sulfóxidos
3.
J Agric Food Chem ; 71(39): 14137-14150, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733789

RESUMO

The research and development of organofluorine chemistry has flourished; in particular, monofluoroalkene has aroused considerable interest from medicinal and organic chemists. It is a significant attempt to introduce monofluoroalkene into agrochemicals. In this study, monofluoroalkene was introduced into diamide molecules and inserted between the aliphatic amide and benzene ring, and 44 compounds have been successfully synthesized. The bioassay results showed that compounds with monofluoro-acrylamide moiety (Z-isomers) had excellent larvicidal activity against lepidopteran pests at 5 mg·L-1. The LC50 values of compounds B16, B18, and B21 against Mythimna separata were 1.02, 1.32, and 0.78 mg·L-1, respectively. 3D-QSAR analysis including the CoMFA model and the CoMSIA model was conducted to illustrate the contributions of steric, electrostatic, hydrophobic, and hydrogen bond fields on the bioactivity. Moreover, typical symptoms caused by chlorantraniliprole including dehydration, shrinkage, and blackening were also observed on the test larvae treated with monofluoro-acrylamide diamide compounds. M. separata central neurons calcium imaging experiment of compound B18 indicated that the monofluoro-acrylamide diamide compounds were potential insect ryanodine receptor activators. The molecular docking was performed in the CHL binding domain of Plutella xylostella RyR and revealed that the predicted binding mode of compound B21 was slightly different from that of CHL. The MM|GBSA dG Bind values of B21 and CHL with P. xylostella RyR were respectively -85.797 and -95.641 kcal·mol-1. The present work explored the insecticidal properties of a new diamide scaffold containing a monofluoro-acrylamide fragment and extended the application of monofluoroalkene in the agrochemical field.


Assuntos
Inseticidas , Mariposas , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Diamida/farmacologia , Diamida/química , Acrilamidas , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Acrilamida , ortoaminobenzoatos/química
4.
Pest Manag Sci ; 79(12): 5260-5269, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37599274

RESUMO

BACKGROUND: Agricultural pests have caused huge losses in agricultural production and threaten global food security. Synthetic insecticides remain the major control method. However, with the rapid development of pest resistance and the increasingly stringent regulations on pesticide usage, the development of efficient insecticides with novel structures is particularly urgent. RESULTS: Twenty-six novel anthranilic diamide derivatives containing the thiazole moiety were designed based on the scaffold hopping strategy. Bioassay results indicated that compound 6e exhibited excellent insecticidal activity against a susceptible strain of diamondback moth (Plutella xylostella) with a median lethal concentration (LC50 ) of 0.65 mg L-1 , which was similar to chlorantraniliprole (LC50 = 0.53 mg L-1 ). Compound 6e showed marginally lower (LC50 = 50.45 mg L-1 ) insecticidal activity than chlorantraniliprole (LC50 = 31.98 mg L-1 ) on chlorantraniliprole-resistant P. xylostella larvae, suggesting a cross-resistance of compound 6e with chlorantraniliprole (resistance ratios, 77.6-fold and 60.3-fold, respectively). Compound 6e also showed good insecticidal activity against fall armyworm and beet armyworm with pest mortalities of 74% and 64%, respectively, at 5 mg L-1 concentration. In addition, compounds 6e and 12a showed delayed toxicity against red imported fire ant with mortality rates of 84% and 85% (respectively) after 5 days of treatment at 1.0 mg L-1 , which were superior to that of chlorantraniliprole. CONCLUSION: The introduction of thiazole into anthranilic diamide scaffolds resulted in insecticidal leads 6e and 12a with excellent insecticidal activities and potential application in controlling red imported fire ants. The work also guides the discovery of insecticidal molecules with thiazole-containing anthranilic diamide scaffold. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Relação Estrutura-Atividade , Diamida/farmacologia , Diamida/química , Larva , Tiazóis/farmacologia
5.
J Agric Food Chem ; 71(47): 18188-18196, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37191337

RESUMO

Silicon-containing compounds are sporadically used in crop protection and drug discovery and have demonstrated to increase the biological efficacy as well as to reduce toxicity, improve physicochemical properties, and favorably impact the environmental profile. As part of our research, we have investigated the application of bioisosteric silicon replacements in meta-diamide insecticides and studied the biological activity and molecular properties of the corresponding novel compounds. At all meaningful structural elements of the meta-diamides, silicon-containing substituents were introduced and synthetic methodology was developed for their syntheses. As the most promising compound, silicon-containing meta-diamide II-18 emerged, which exhibits a very low LC50 value of 2.00 mg/L against Mythimna separata and compares well to the reference compounds 28 (LC50 = 0.17 mg/L) and II-20 (LC50 = 0.27 mg/L). Our research on silicon-containing crop protection compounds once again confirmed that the biological activity can be beneficially affected by the insertion of silicone substituents and that the introduction of well-chosen silicone motifs is an excellent strategy for agrochemical research.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/química , Relação Estrutura-Atividade , Diamida/química , Silício/farmacologia , Compostos de Silício , Silicones
6.
J Agric Food Chem ; 71(14): 5516-5524, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37000156

RESUMO

Spodoptera frugiperda is a major migratory agricultural pest, which seriously impedes agricultural production around the world. To discover potent compounds against S. frugiperda, a number of novel isoxazoline derivatives were designed and synthesized and created on account of the identified lead compound F32 (4-(5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)-2-methyl-N-(3-propionamidophenyl)benzamide). Based on the three-dimensional quantitative structure-activity relationship of those compounds, the compound G22 (N-(4-acetamidophenyl)-4-(5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)-2-methylbenzamide) was developed. A bioassay showed that G22 is highly lethal to S. frugiperda (LC50 = 1.57 mg/L), a more effective control than insecticides fipronil (LC50 = 78.8 mg/L) and chlorantraniliprole (LC50 = 1.60 mg/L). Field trials were also implemented to identify candidate agents. Furthermore, from the insect γ-aminobutyric acid (GABA) enzyme-linked immunosorbent assay, it is obvious that G22 could up-regulate the expression of GABA of insects, which showed a similar result to fipronil. The analysis of molecular docking exhibited that the hydrophobic effect and hydrogen bonds play key roles in the combination between G22 with GABA receptors. This study provides a potent isoxazoline candidate compound for the S. frugiperda control.


Assuntos
Inseticidas , Animais , Diamida/química , Insetos , Inseticidas/química , Simulação de Acoplamento Molecular , Spodoptera , Isoxazóis/química
7.
J Agric Food Chem ; 71(10): 4258-4271, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857407

RESUMO

Three-dimensional quantitative structure-activity relationship (3D-QSAR) is one of the most important and effective tools to direct molecular design in new pesticide development. Chlorantraniliprole is an anthranilic diamide ryanodine receptor (RyR) agonist with ultrahigh activity, high selectivity, and mammalian safety. To continue our studies on new insecticide development, here, we designed new insecticidal N-phenylpyrazoles by using 3D-QSAR of chlorantraniliprole analogues as a guide. Most of the target compounds synthesized exhibited medium to excellent activity against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Compounds III b and III y showed similar activity against M. separata as chlorantraniliprole (LC50 values: 0.21, 0.25, and 0.16 µg mL-1 respectively). Compounds III b exhibited a 3-fold higher potency against P. xylostella than chlorantraniliprole. For S. frugiperda, the potency of III a and III b was 2.9 and 2.0 times higher than that of the positive control, respectively. The mode of action of the title compounds was validated by calcium imaging experiments and molecular docking using their target RyRs. III b can dock well with mutated P. xylostella RyRs, implying a potentially lower cross-resistance risk as compared with commercial RyR agonists. Density functional theory calculations suggested the feasibility of higher potency with the structural modifications. Compound III b was found to be an ultrahigh active insecticidal candidate with a broad spectrum for integrated pest management.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Relação Quantitativa Estrutura-Atividade , Larva , Simulação de Acoplamento Molecular , Mariposas/metabolismo , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Resistência a Inseticidas , Diamida/química , Mamíferos/metabolismo
8.
J Agric Food Chem ; 71(6): 2827-2841, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735252

RESUMO

In order to develop anthranilic diamides with novel chemotypes, a series of anthranilic diamides with acrylamide linkers were designed and synthesized. The results of preliminary bioassays indicated that compounds with a monofluoroalkene amide linker (Z-isomer) exhibited good larvicidal activity against lepidopteran pests. The LC50 values of compound A23 against Mythimna separata and Plutella xylostella were 1.44 and 3.48 mg·L-1, respectively, while those of chlorantraniliprole were 0.08 and 0.06 mg·L-1, respectively. Compound A23 also exhibited the same level of lethal potency against resistant and susceptible strains of Spodoptera frugiperda at 50 mg·L-1. Compound A23 exhibited similar symptoms as chlorantraniliprole in test larvae. Comparative molecular field analysis was conducted to demonstrate the structure-activity relationship. Central neuron calcium imaging experiments indicated that monofluoroalkene compounds were potential ryanodine receptor (RyR) activators and activated calcium channels in both the endoplasmic reticulum and the cell membrane. Molecular docking suggested that A23 had a better binding potency to P. xylostella RyR than chlorantraniliprole. The MM|GBSA dG bind value of A23 with P. xylostella RyR was 117.611 kcal·mol-1. Monofluoroalkene was introduced into anthranilic diamide insecticides for the first time and brought a novel chemotype for insect RyR activators. The feasibility of fluoroalkenes as insecticide fragments was explored.


Assuntos
Inseticidas , Mariposas , Animais , Amidas , Diamida/farmacologia , Diamida/química , Simulação de Acoplamento Molecular , Mariposas/metabolismo , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/química , Inseticidas/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
9.
J Agric Food Chem ; 71(8): 3620-3638, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791236

RESUMO

The world's hunger is continuously rising due to conflicts, climate change, pandemics (such as the recent COVID-19), and crop pests and diseases. It is widely accepted that zero hunger is impossible without using agrochemicals to control crop pests and diseases. Diamide insecticides are one of the widely used green insecticides developed in recent years and play important roles in controlling lepidopteran pests. Currently, eight diamine insecticides have been commercialized, which target the insect ryanodine receptors. This review summarizes the development and optimization processes of diamide derivatives acting as ryanodine receptor activators. The review also discusses pest resistance to diamide derivatives and possible solutions to overcome the limitations posed by the resistance. Thus, with reference to structural biology, this study provides an impetus for designing and developing diamide insecticides with improved insecticidal activities.


Assuntos
COVID-19 , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Diamida/farmacologia , Diamida/química , ortoaminobenzoatos/química
10.
J Agric Food Chem ; 70(50): 15665-15681, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36503247

RESUMO

Pests are one of the major factors causing crop damage and food security problems worldwide. Based on our previous studies on the discovery of insecticidal leads targeting the ryanodine receptors (RyRs), a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established to design and synthesize a series of anthranilic diamides containing a halogenated phenyl 3-trifluoroethoxypyrazole moiety. The preliminary bioassays disclosed that IIb, IIIb, and IIIf against Mythimna separata showed comparable activity to chloranthraniliprole (LC50: 0.16, 0.16, 0.14, and 0.13 mg·L-1, respectively). More than half of the target compounds displayed good activity against Plutella xylostella, where IIIf was the most active compound, 25 times more active than chloranthraniliprole (LC50: 6.0 × 10-6 versus 1.5 × 10-4 mg·L-1). For Spodoptera frugiperda, IIIf displayed slightly inferior potency to chlorantraniliprole (LC50: 0.47 versus 0.31 mg·L-1). For RyR mutants of S. frugiperda (G4891E, I4734M), compound IIIf could show higher affinity than chlorantraniliprole according to the binding mode and energy in molecular docking experiments. Calcium imaging technique, molecular docking, density functional theory calculations, and electrostatic potential studies validated that the RyR was the target of the most active candidate IIIf, which deserves further development.


Assuntos
Inseticidas , Mariposas , Animais , Relação Quantitativa Estrutura-Atividade , Inseticidas/farmacologia , Inseticidas/química , Relação Estrutura-Atividade , Diamida/química , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
J Agric Food Chem ; 70(34): 10453-10465, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35985016

RESUMO

The diamide insecticides show exceptional activity against Lepidoptera insects via activation of ryanodine receptors (RyRs). In the present study, a series of anthranilic diamides containing a fluoroaniline moiety were designed, synthesized, and evaluated for insecticidal potency. Most titled compounds exerted moderate to remarkably high activity against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. The insecticidal activity of compound II l and II ac against M. separata was 26.7 and 26.7% at 0.1 mg L-1, respectively, equivalent to that of chlorantraniliprole (0.1 mg L-1, 30.0%). Compounds II l, II y, and II z exhibited 8.0-, 1.8-, and 4.7-fold higher potency than chlorantraniliprole against P. xylostella, respectively, as compared with their LC50s. Compounds II k and II aa showed good insecticidal activity against S. frugiperda with LC50 of 0.56 and 0.46 mg L-1, respectively, comparable to that of the commercial insecticide chlorantraniliprole with LC50 of 0.31 mg L-1. Calcium imaging experiments indicated RyRs as the action target. Molecular docking suggested a higher binding energy of 8.647 kcal/mol between II l and the M. separata RyR than the 7.820 kcal/mol between chlorantraniliprole and the M. separata RyR. Meanwhile, the docking results of II l with mutated P. xylostella RyR at site G4946E showed that II l could have a good inhibition effect on the resistant P. xylostella. The density functional theory calculations suggested the importance of the fluoroaniline moiety in potency. Those novel anthranilic diamides containing a fluorinated aniline moiety are good insecticidal candidates.


Assuntos
Inseticidas , Mariposas , Compostos de Anilina/farmacologia , Animais , Diamida/química , Diamida/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Relação Estrutura-Atividade , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
12.
J Agric Food Chem ; 70(31): 9645-9663, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905435

RESUMO

Insect ryanodine receptors (RyRs) are molecular targets of the anthranilic diamide insecticides. In the present study, a new series of anthranilic diamides containing a cyanophenyl pyrazole moiety were rationally designed by active-fragment assembly and computer-aided design using the 3D structure of Plutella xylostella RyRs as a receptor and chlorantraniliprole as a ligand. Most of the titled compounds showed good toxicity against Mythimna separate, P. xylostella, and Spodoptera frugiperda. Compounds CN06, CN11, and CN16 with corresponding LC50 values of 0.15, 0.29, and 0.52 mg·L-1, respectively, against M. separate showed comparable activity to that of chlorantraniliprole (0.13 mg·L-1). Surprisingly, CN06, CN11, and CN16 with corresponding LC50 values of 1.6 × 10-5, 3.0 × 10-5, and 2.8 × 10-5 mg·L-1, respectively, against P. xylostella were at least 5-fold more active than chlorantraniliprole (1.5 × 10-4 mg·L-1). In the case of S. frugiperda, CN06, CN11, and CN16 had good potency but lower than chlorantraniliprole in terms of LC50 values (0.58, 0.54, and 0.56 mg·L-1 versus 0.31 mg·L-1). Molecular docking of CN06 and chlorantraniliprole to P. xylostella RyRs validated the molecular design, and the calcium imaging technique further proved the potential target of CN06 as RyRs. Compounds CN06, CN11, and CN16 could be more effective than chlorantraniliprole in targeting the resistant RyR mutants of S. frugiperda (G4891E, I4734M) through the binding mode and energy obtained by molecular docking. Density functional theory calculations (DFT) and electrostatic potential (ESP) studies gave the structure-activity relationship. Compounds CN06, CN11, and CN16 could be used as potent insecticide leads for further optimization.


Assuntos
Inseticidas , Mariposas , Animais , Diamida/química , Resistência a Inseticidas , Inseticidas/química , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
13.
Pest Manag Sci ; 78(5): 2022-2033, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35122377

RESUMO

BACKGROUND: Diamide insecticides have attracted significant attention due to their high efficacy and low toxicity to non-target organisms since they were introduced to the market. In order to tackle the problems of insecticide resistance and ecological safety, 16 novel nitrobenzene substituted anthranilic diamides with ester, hydroxyl or sulfonyl at the 3-position of the pyrazole ring were designed and synthesized. RESULTS: All of these compounds possessed good activity against the ryanodine receptor (RyR) from Spodoptera frugiperda and relatively lower activity against mammalian RyR1, showing a better insect-selectivity compared to chlorantraniliprole in a cell-based assay. The molecular docking analysis predicted the binding conformations of these compounds, which showed a good correlation between the insecticidal activity and the binding scores. In vitro studies using a calcium imaging method demonstrated that the novel compounds could not only activate the RyR but may also target the dihydropyridine receptor on the plasma membrane of insect neurons, implicating a similar but not same mode of action. CONCLUSION: Substituted anthranilic diamides with an ester at the 3-position of the pyrazole ring exhibited a promising insecticidal activity and better insect-selectivity, which provided insight into the rational design of a new generation of effective diamide insecticides.


Assuntos
Inseticidas , Mariposas , Animais , Diamida/química , Diamida/farmacologia , Ésteres/farmacologia , Inseticidas/química , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Pirazóis , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
14.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884838

RESUMO

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human-Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.


Assuntos
Diamida/química , Proteínas de Insetos/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Sítios de Ligação , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diamida/metabolismo , Diamida/farmacologia , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Mariposas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
15.
Eur J Med Chem ; 226: 113838, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571173

RESUMO

The P2X7 receptor (P2X7R) stands out among the purinergic receptors due to its strong involvement in the regulation of tumor growth and metastasis formation as well as in innate immune responses and afferent signal transmission. Numerous studies have pointed out the beneficial effects of P2X7R antagonism for the treatment of a variety of cancer types, inflammatory diseases, and chronic pain. Herein we describe the development of novel P2X7R antagonists, incorporating piperazine squaric diamides as a central element. Besides improving the antagonists' potency from pIC50 values of 5.7-7.6, ADME properties (logD7.4 value, plasma protein binding, in vitro metabolic stability) of the generated compounds were investigated and optimized to provide novel P2X7R antagonists with drug-like properties. Furthermore, docking studies revealed the antagonists binding to the allosteric binding pocket in two distinct binding poses, depending on the substitution of the central piperazine moiety.


Assuntos
Ciclobutanos/farmacologia , Diamida/farmacologia , Piperazina/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X/metabolismo , Ciclobutanos/síntese química , Ciclobutanos/química , Diamida/síntese química , Diamida/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Biochem Biophys Res Commun ; 577: 89-94, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34509083

RESUMO

The protozoan Plasmodium falciparum is the main aetiological agent of tropical malaria. Characteristic of the phylum is the presence of a plastid-like organelle which hosts several homologs of plant proteins, including a ferredoxin (PfFd) and its NADPH-dependent reductase (PfFNR). The PfFNR/PfFd redox system is essential for the parasite, while mammals share no homologous proteins, making the enzyme an attractive target for novel and much needed antimalarial drugs. Based on previous findings, three chemically reactive residues important for PfFNR activity were identified: namely, the active-site Cys99, responsible for hydride transfer; Cys284, whose oxidation leads to an inactive dimeric form of the protein; and His286, which is involved in NADPH binding. These amino acid residues were probed by several residue-specific reagents and the two cysteines were shown to be promising targets for covalent inhibition. The quantitative and qualitative description of the reactivity of few compounds, including a repurposed drug, set the bases for the development of more potent and specific antimalarial leads.


Assuntos
Inibidores Enzimáticos/farmacologia , Ferredoxina-NADP Redutase/antagonistas & inibidores , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Biocatálise/efeitos dos fármacos , Carmustina/química , Carmustina/metabolismo , Carmustina/farmacologia , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Diamida/química , Diamida/metabolismo , Diamida/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Cinética , Malária Falciparum/parasitologia , Estrutura Molecular , NADP/metabolismo , Compostos Organomercúricos/química , Compostos Organomercúricos/metabolismo , Compostos Organomercúricos/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/fisiologia , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Especificidade por Substrato
17.
Angew Chem Int Ed Engl ; 60(44): 23750-23755, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34472678

RESUMO

We describe maleic-acid derivatives as robust cysteine-selective reagents for protein labelling with comparable kinetics and superior stability relative to maleimides. Diamide and amido-ester derivatives proved to be efficient protein-labelling species with a common mechanism in which a spontaneous cyclization occurs upon addition to cysteine. Introduction of chlorine atoms in their structures triggers ring hydrolysis or further conjugation with adjacent residues, which results in conjugates that are completely resistant to retro-Michael reactions in the presence of biological thiols and human plasma. By controlling the microenvironment of the reactive site, we can control selectivity towards the hydrolytic pathway, forming homogeneous conjugates. The method is applicable to several scaffolds and enables conjugation of different payloads. The synthetic accessibility of these reagents and the mild conditions required for fast and complete conjugation together with the superior stability of the conjugates make this strategy an important alternative to maleimides in bioconjugation.


Assuntos
Diamida/química , Proteínas/química , Humanos , Modelos Moleculares , Estrutura Molecular
18.
Bioorg Chem ; 110: 104747, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799177

RESUMO

Many studies have investigated how trehalose glycolipid structures can be modified to improve their Macrophage inducible C-type lectin (Mincle)-mediated adjuvanticity. However, in all instances, the ester-linkage of α,ά-trehalose to the lipid of choice remained. We investigated how changing this ester-linkage to an amide influences Mincle signalling and agonist activity and demonstrated that Mincle tolerates this functional group change. In in vivo vaccination studies in murine and ovine model systems, using OVA or Mannheimia haemolytica and Mycoplasma ovipneumoniae as vaccine antigens, respectively, it was demonstrated that a representative trehalose diamide glycolipid was able to enhance antibody-specific immune responses. Notably, IgG titres against M. ovipneumoniae were significantly greater when using trehalose dibehenamide (A-TDB) compared to trehalose dibehenate (TDB). This is particularly important as infection with M. ovipneumoniae predisposes sheep to pneumonia.


Assuntos
Especificidade de Anticorpos/efeitos dos fármacos , Antígenos/imunologia , Diamida/química , Glicolipídeos/química , Glicolipídeos/farmacologia , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/farmacologia , Animais , Diamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Lectinas Tipo C/agonistas , Lectinas Tipo C/genética , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Ovalbumina/imunologia
19.
J Agric Food Chem ; 68(49): 14409-14416, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33252227

RESUMO

Photoresponsive ligands are powerful tool compounds for studying receptor function with spatiotemporal resolution. However, to the best of our knowledge, such a ligand is not available for the ryanodine receptor (RyR). Herein, we present a photochromic ligand (PCL) for insect RyR by decorating chlorantraniliprole (CHL) with photoswitchable azobenzene (AB). We demonstrated that one potent ligand, named ABCHL13, shows light-induced reversible trans-cis isomerization and 3.5-fold insecticidal activity decrease toward oriental armyworm (Mythimna separata) after UV-light irradiation, that is, trans-ABCH13 has higher activity than the cis-ABCH13. ABCHL13 enables optical control over intracellular Ca2+ release in dorsal unpaired median (DUM) neurons of M. separata and American cockroach (Periplaneta americana) and cardiac function of P. americana. Our results provide a first photopharmacological toolkit that is applicable to light-dependent regulation of RyR and heart beating.


Assuntos
Compostos Azo/química , Bloqueadores dos Canais de Cálcio/química , Diamida/química , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/química , Animais , Compostos Azo/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Diamida/farmacologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Isomerismo , Ligantes , Mariposas/química , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Mariposas/efeitos da radiação , Periplaneta/química , Periplaneta/efeitos dos fármacos , Periplaneta/metabolismo , Periplaneta/efeitos da radiação , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Relação Estrutura-Atividade , Raios Ultravioleta
20.
Bioorg Med Chem ; 28(19): 115679, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912430

RESUMO

The therapy of chronic hepatitis C virus infections has significantly improved with the development of direct-acting antivirals (DAAs), which contain NS3/4A protease, NS5A, and NS5B polymerase inhibitors. However, mutations in specific residues in these viral target genes are associated with resistance to the DAAs. Especially inhibitors of NS3/4A protease and NS5A, such as grazoprevir and velpatasvir, have a low barrier to resistant mutations. As a result, the mutations influence the virological outcomes after DAA treatment. CypA inhibitors, as host-targeted agents, act on host factors to inhibit HCV replication, exhibiting a high resistance barrier and pan-genotype activities against HCV. Therefore, they can be developed into alternative, more effective anti-HCV agents. However, CypA inhibitors are natural products and analogs. Based on previous studies, bisamide derivatives were designed and synthesized to develop a novel class of CypA inhibitors. Bisamide derivative 7c is a promising compound with potent anti-HCV activity at subtoxic concentrations. Surface plasmon resonance experiments revealed that 7c directly binds to CypA. All these studies indicated that the derivative 7c is a potent CypA inhibitor, which can be used as a host-targeted agent in combination with other antiviral agents for anti-HCV treatment.


Assuntos
Antivirais/farmacologia , Ciclofilina A/antagonistas & inibidores , Diamida/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Terapia de Alvo Molecular , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Ciclofilina A/genética , Ciclofilina A/metabolismo , Diamida/síntese química , Diamida/química , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hepatite C Crônica/metabolismo , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...